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Abstract
As the number of smart devices increases in our lives, the data
they collect to perform valuable tasks, such as voice assistant re-
quests, comes at the cost of user privacy. To mitigate their privacy
impact, emerging usable privacy-aware sensing (UPAS) research
has relied on cross-disciplinary approaches that extend past the
core focus of broader academic research communities, such as Se-
curity & Privacy or Human-Computer Interaction. These works
incorporate privacy design principles, whereby systems include
safeguards by combining usable privacy (UP) with privacy-aware
sensing (PAS) design to protect users’ privacy. To better understand
this emerging area of research, we conducted a mixed qualitative
and quantitative Systematization of Knowledge (SoK). With a thor-
ough review of pertinent literature, resulting in 114 selected works
(reduced from 10,122 across 12 venues), we found that, despite
the similarity of these works, many are dispersed across multiple
communities, utilize community-specific jargon and keywords, and
minimally overlap in design and evaluation approaches, potentially
hindering cross-pollination across communities and thereby slow-
ing the growth of this emerging research area. Thus, these factors
helped reveal a research gap in this space. We use these findings to
present four research themes and provide community and design
recommendations to encourage cross-disciplinary UPAS research.

1 Introduction
Despite the many useful tasks Internet of Things (IoT) devices per-
form, our ever-increasing daily interactions with them come at a
non-trivial cost to user privacy (i.e., a privacy footprint). For exam-
ple, many voice agents (e.g., Alexa) process voice commands in the
cloud, which has resulted in leaked or mishandled audio record-
ings of their users [80]. This loss in privacy can extend beyond the
owner of the device to bystanders or anyone within the sensing
range of the device, which has resulted in numerous privacy inci-
dents [29, 45, 50, 80] that have fostered mistrust with these devices
and, ultimately, can hamper their adoption despite their utility.

Efforts to reduce the privacy footprint of these devices while
maintaining their usability have fostered a distinct area of focus
for both Usable Privacy (UP) and Privacy-Aware Sensing (PAS) re-
searchers. Research exploring Usable Privacy considers the human
element within privacy and focuses on usability contributions that
improve end-user privacy [138]. These researchers have explored
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Figure 1: A t-SNE visualization of 10,122 works from the
past 5 years spanning 12 relevant venues grouped into four
broader research topics. The orange diamonds and gray
crosses represent the Usable Privacy (UP) and Privacy-Aware
Sensing (PAS) that form the 114 total works in the codebook.
These works have three distinct clusters: one of UP works
within Usability in Privacy, another of PAS works within the
Mobile Systems community, and a small mixed cluster of UP
and PAS works at the intersection of all four communities
that denote emerging usable privacy-aware sensing research.

many avenues related to IoT sensing devices, including identifying
contextual effects on users’ perceptions of privacy [7], investigating
approaches to mitigate their imposition in people’s homes and liv-
ing spaces by improving user control over devices [54], and provid-
ing user-accessible ways to examine and audit devices for whether
they uphold user privacy preferences [97]. The Privacy-Aware Sens-
ing community also has significant research investment in IoT de-
vices in exploring mechanisms to restrict the amount and type
of data sensors collect, such as rejecting speech content [60, 131].
These devices have been used in the home for ubiquitous and mo-
bile computing applications, such as health and wellness monitor-
ing [16, 17, 72, 131] and virtual assistant agents [4, 73, 102, 110].
Beyond collecting audio or visual data, the sensing community
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has explored utilizing other physical sensors (e.g., LIDAR [101],
vibration [35], thermal [100], SA-waves [61]) to perform these valu-
able tasks in privacy-conscious ways that do not collect sensitive
content such as speech or images of persons. These two distinct
groups have independently contributed to improved user privacy.

The overlap between Usable Privacy and Privacy-Aware Sens-
ing creates a natural pairing for cross-disciplinary Usable Privacy-
Aware Sensing (UPAS) research to integrate usable privacy elements
into hardware and system design, such that the user is aware of
how the device operates and can control how the IoT device collects
and stores information. Particularly established everyday examples
of usable sensor privacy are devices that give users understandable
notice and real control when their sensors operate (e.g., a web-
cam’s illuminated LED or a mute button for a microphone). More
recently, emerging UPAS devices include acoustic devices that al-
low users to select a reduction in information collection based on
understandable human-centric amounts (e.g., filter out speech con-
tent or remove all human-audible content entirely) [60] or cameras
that collect pixel data from only user-defined specific regions (e.g.,
remove bystanders from images) which can be visually audited [8],
allowing users to find a compromise between a system’s privacy
and its utility and performance. Furthermore, this past year marked
the first annual Sensors S&P workshop at SenSys 2023, highlighting
a particular concern with “widespread deployment of networked
sensors and the rapid advancements in black-box deep learning
models capable of encoding large amounts of information” [1],
demonstrating the emerging need for UPAS research.

This paper presents a Systematization of Knowledge (SoK) of us-
able privacy-aware sensing, aiming to bridge the gaps between UP
and PAS research groups whose work often does not overlap within
a single academic venue (i.e., conferences and journals) but rather
span four broader academic venue groupings including Security
and Privacy (S&P), Human-Computer Interaction (HCI), Mobile
Systems (MS), and Usability in Privacy (UiP). This dispersion across
many venues affects UP and PAS contributions, where they embed
their academic venue’s priorities and approaches towards improv-
ing privacy and how their privacy mitigations are evaluated—even
affecting the language and jargon used to describe their contri-
butions. These differences make it challenging for UP and PAS
researchers from different academic communities to find each other
and their work despite working in similar spaces, ultimately reduc-
ing intellectual cross-pollination and hindering collaborations that
would lead to cross-disciplinary UPAS contributions. Based on an
approach common to other SoK works [104, 109, 116, 126], we uti-
lized our domain expertise as authors in both the UP and PAS spaces
to identify and perform a detailed analysis of 114 selected works
from a pool of 10,122 works across 12 academic venues. Based on
these works, we identify key technical and methodological gaps and
propose a framework for integrating user-centric privacy principles
into sensor design and evaluation.

Our analysis revealed significant gaps in the existing literature on
usable privacy-aware sensing. We identified four major themes: (1)
the overly heavy reliance on user control and awareness to develop
privacy mitigations in Usable Privacy (UP) contributions, (2) the
tension between system functionality, user acceptance, and privacy
in Privacy-Aware Sensing (PAS) contributions, (3) the prevalence

of unvalidated assumptions about user needs in PAS research, and
(4) the lack of feasibility evaluations in UP contributions.

Using statistical analysis, we found that beyond the works ana-
lyzed as part of our codebook, there is a shallow overlap between
the four stakeholder academic venue groupings that would facili-
tate cross-disciplinary research. For example, while HCI and S&P
overlap with UiP and MS, neither significantly overlaps with the
other, nor does MS with UiP. Within our t-SNE visualization, shown
in Figure 1, we identified a literal research gap representing a de-
crease in the density of works where the four communities would
meet—where we expected and found UP and PAS works incorporat-
ing cross-disciplinary approaches. Interestingly, the vast majority
of works in our codebook lie at the intersection of multiple commu-
nities, highlighting the importance of cross-disciplinary research
needed to address this gap and encourage UPAS contributions.

Drawing from our comprehensive analysis, we propose the fol-
lowing recommendations to bridge the research gap between Us-
able Privacy (UP) and Privacy-Aware Sensing (PAS): (1) Reduce the
siloing effect within each community by increasing the diversity
of privacy design principles that support privacy mitigations (2)
Conduct end-to-end evaluations that include both user-centric and
technical assessments to ensure proposed privacy mitigations are
both effective and user-friendly. (3) Engage with broader regulatory,
ethical, and societal contexts to ensure that privacy solutions align
with legal frameworks and address societal concerns. This holistic
approach will facilitate the development of privacy-aware sensing
technologies that are both practical and acceptable to users.
This paper makes the following contributions:
(1) We proposed a novel approach to finding relevant works for

analysis as part of a Systematization of Knowledge contribution;
(2) Through those relevant works, we systematize two individual

research domains: Privacy-Aware Sensing and Usable Privacy;
(3) Through a qualitative investigation of those communities’ re-

search, we identified four distinct themes that reveal a research
gap between the two in Usable Privacy-Aware Sensing research;

(4) Through a quantitative analysis of those communities’ research,
we offered further evidence of gaps in the research domain;

(5) Grounded in our qualitative and quantitative findings, we pro-
vided recommendations for the community to address this re-
search gap based on existing research in this domain.

2 Background
As the number of sensing devices has increased in our daily lives,
people who interact with them, intentionally or unintentionally,
have become increasingly aware of the privacy implications of
the data collected by their onboard sensors, such as cameras and
microphones. Furthermore, users have expressed complex privacy
needs that are highly dependent onwhere (e.g., in public or at home)
or what kind (e.g., speech/video vs. thermostat information) of data
they collect. There is no “one-size-fits-all” solution to sensor privacy.
Various academic communities have explored how tomitigate users’
concerns but have taken different approaches derived from practices
and norms within their academic community. For the purposes of
this work, we contextualize our definition of Usable Privacy-Aware
Sensing (UPAS) with two historical ubiquitous computing works.
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2.1 The Implications of Always-on Sensing
Always-on sensing approaches are ones where a device in the en-
vironment, or more recently wearable on the body, continuously
collects sensor information to perform a particular task. For exam-
ple, a voice assistant (e.g., Amazon Echo) continuously processes
microphone data to identify a wakeword such as “Alexa” to transmit
captured audio information to a server for processing transcription
and request tasks. Historically, always-on approaches have signifi-
cant roots within ubiquitous computing. In The Computer for the
21st Century (1991) [124], Mark Weiser describes a future where
computers disappear into the background yet are ever-present and
ready to respond to our requests. He presents a fictional account
to motivate the numerous ways ubiquitous computing can assist
daily life. For these ubiquitous systems to be helpful, they must
always remain on; they cannot proactively meet user needs if the
user needs to turn them on. However, in the same work, Weiser
highlights the central issue with always-on sensing:

“Perhaps key among them is privacy: hundreds of computers in every
room, all capable of sensing people near them and linked by high-
speed networks, have the potential to make totalitarianism up to now
seem like sheerest anarchy.” (pg. 9)

Thus, even at the dawn of ubiquitous computing, researchers look-
ing to the future were aware of the significant privacy implications
of always-on sensing. To wit, Weiser prescribes a possible remedy:

“Fortunately, cryptographic techniques already exist to securemessages
from one ubiquitous computer to another and to safeguard private
information stored in networked systems. If designed into systems
from the outset, these techniques can ensure that private data does
not become public.” (pg. 10)

While data encryption has become near-ubiquitous, becoming invis-
ible layer of protection, for encryption to improve privacy, it relies
on the assumption that only the user has ownership and control
of their private encrypted data and who can see and access it [68].
The binary concept of “private” data and “public” data that maps to
either “only I or people I allow can see it” vs. “everyone can see it”
no longer holds: Are the images a robot vacuum collects (includ-
ing while someone is using the toilet [50]) that are annotated by
humans to better train obstacle avoidance models “private” or “pub-
lic”? How about the audio recordings stored by voice agents [80] or
the information they pass on [59] to databrokers? Or the doorbell
video feeds that can be accessed by law enforcement [29] without
user consent or awareness? There is an emerging grey area where
“private” data can be accessed by those who are not the individ-
ual who purchased the sensing device or those explicitly granted
permission by that individual. Yet, in all the aforementioned situa-
tions, the data was “secure,” encrypted through transmission, and
accessed by “authorized” users; there was no data breach here, and
data was never made public, so it should satisfy Weiser’s argument.
So why do all of these situations feel like an invasion of privacy?

Privacy scholars have criticized this binary concept of “private”
and “public” data, as it does not account for these situations; for
example, Nissenbaum’s Privacy as Contextual Integrity [85] argues
that the information flow has a significant role in user data privacy,
where five critical parameters must be satisfied or otherwise can

lead to ambiguities that can result in privacy issues. Specifically,
in the abovementioned cases, is that “private” data was accessed
by others deemed “authorized.” Still, the full extent of who is “au-
thorized” is often nebulous given how these ubiquitous systems
are constructed. Thus, per Nissenbaum, both the recipient of the
data and the transmission principle are left ambiguous, which has
led to privacy issues. Furthermore, this “grey-area privacy” does
not match the user’s mental model that “their” data is “theirs”:
consumers often believe that since they own the device, they, by
extension, own the data the device generates [62]. Furthermore,
consumers have a perception that they are entitled to control the
data it generates since they assume that they do own the data [62].
Thus, the academic community has looked towards developing
additional ways to preserve user privacy through a more modern
understanding of user needs while maintaining the usability and
utility of these always-on systems.

2.2 Usable Privacy-Aware Sensing
Beyond the cryptographic approaches mentioned above, there is
an extensive multi-disciplinary body of work exploring ways to
improve privacy with specific concerns around these always-on
sensing devices. While individual communities (e.g., HCI, S&P, UiP,
MS) have focused on specific aspects of improving the privacy
surrounding sensing devices, in this work, we guide our focus to-
ward better understanding emerging UPAS approaches. As a lens
to analyze this body of work, we use a design framework from
Langheinrich’s Privacy by Design - Principles of Privacy-Aware Ubiq-
uitous Systems [68], which provides a comprehensive introduction
to the privacy challenges these ubiquitous, always-on sensing sys-
tems present. Importantly, Langheinrich presents six principles
for these systems, which have been well-adopted across multiple
academic venues and remain highly relevant, that empower indi-
vidual users to have a strong role in maintaining their privacy. To
summarize, they are as follows:
(1) Notice: Systems should notify the user when collecting data.
(2) Choice and Consent: Systems should allow users to choose

and consent to data collection.
(3) Anonymity and Pseudonymity: Systems should collect data

in a way that cannot be traced back to the user.
(4) Proximity and Locality: Systems should confine their sensing

ability to within a user-specified range or locations.
(5) Adequate Security: Systems should employ adequate mea-

sures to secure and protect a user’s sensitive information.
(6) Access and Resource: Systems should only collect data suffi-

cient for a well-defined purpose, which the user can audit.
These principles argue that although many of the operations

performed by sensing systems may happen outside users’ aware-
ness, the mechanisms that protect their privacy should be easily
accessible and, importantly, usable. These principles are particu-
larly valuable to use as a lens to analyze Usable Privacy-Aware
Sensing works since they cover many of the privacy-aware ap-
proaches preferred by the individual communities that contribute
to this academic space. For example, many works that appear at
USENIX Security and IEEE S&P contribute methods to improve user
Anonymity and Security, while works that appear at CHI and SOUPS
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often contribute to improved mechanisms surrounding Notice and
Choice for users of sensing devices.

While each principle can strongly improve user privacy, they
are complementary and, when combined, can holistically enhance
user privacy. Ideally, designers should incorporate as many privacy
design principles as possible within reason. Thus, we define Usable
Privacy-Aware Sensing as any work that contributes to improving
user privacy surrounding sensing devices by incorporating any
of those principles. This includes identifying ways to interpret
these principles as design recommendations for novel contexts
or developing novel sensing approaches that incorporate these
principles to safeguard privacy at the systems level.

3 Methodology
This section details our comprehensive methodology for selecting
relevant works in the usable privacy-aware sensing domain.We first
present a brief overview of the challenges we encountered using
traditional keyword-based search approaches for cross-disciplinary
work that spans awide number of venues, which led us to explore an
embedding vector-based approach to identify highly relevant works.
We then provide a brief background on the difference between
Large Language Models (LLMs), which are not used in this SoK,
and embedding models, which we utilize to sort collected works.
Finally, we provide technical details of our iterative sorting system,
criteria for inclusion in the codebook via thematic questions, and
our approach to coding the identified works.

3.1 Challenges with Traditional Search Engine
Approaches for Identifying Relevant Works

We first utilized conventional digital research libraries (e.g., Google
Scholar, DBLP, ACMDL, IEEE Xplore) and their respective keyword-
based search to assist in identifying relevant works, similar to previ-
ous SoKs [104, 109, 116, 126]. However, we encountered challenges
and limitations when using this approach to find relevant works.

First, individual sets of search keywords provided by each au-
thor of this work often produced results from their own home
community. For example, using search keywords from an author
who more frequently publishes within HCI venues generally re-
turned results from HCI venues. Additionally, using the suggested
keywords from an exemplar work previously known by the authors
resulted in similar behavior, where the results often were from the
same academic venue grouping of that work. It was apparent from
this behavior that keyword-based search returned only a partial
view of the complete academic space, highlighting the strong pres-
ence of community-specific jargon and the potential of a siloing
effect within their respective venues.

Second, we also found search engines often omitted highly rele-
vant works, possibly because the works did not explicitly include
one or more of the keywords yet included semantically relevant
terms. For example, the word "sensing" often does not appear in
works about privacy related to smart IoT devices that perform sens-
ing tasks in homes, yet it is a highly related term. Additionally, small
variations in jargon across venues may lead to additional omissions;
consumer devices, consumer off-the-shelf (CotS) devices, and IoT
devices are terms that largely map to similar domains but yield
very different search results.

Third, overly broad search terms yield thousands of loosely re-
lated results that would make finding relevant papers overly tedious
for domain experts to individually review (e.g., searching using the
terms "privacy sensing" in Google Scholar yields over 5M results).
While the search space can be reduced by identifying specific venues
that are more likely to yield relevant works, as our approach does,
there is no effective “sorting” function to determine its semantic
relevance compared to, for example, how often those keywords
appear in the work. A work may be highly relevant, but if it does
not have many references to that loosely related search term, it may
be pushed far down the list of tens of thousands of search results.
This is especially challenging when using multiple academic search
engines and merging their results based on relevance. Thus, our
proposed approach uses an Embedding-assisted search, organiza-
tion, and visualization tool to be more inclusive of relevant works
outside the authors’ home communities and mitigate the limitations
mentioned above, which may result from potential siloing effects
from using community-specific keywords.

3.2 Background on Large Language Models
versus Embedding Models

The emergence of Large Language Models (LLMs), most notably
ChatGPT, has already significantly affected scientific research and
writing. On the positive side, these AI tools can assist in many
research tasks, such as summarizing articles and correcting gram-
matical issues in writing. On the negative side, these tools can
sometimes fabricate sources (i.e., hallucinations) and revise pas-
sages to include plagiarised text convincingly, making it easy for
researchers to rely on the LLM improperly. We explicitly state that
LLMs were not used to perform qualitative tasks as part of this SoK;
we never used an LLM to perform tasks requiring human judgment
or synthesis, including labeling the work, determining inclusion in
the codebook, and performing coding and thematic analysis.

We note that while ChatGPT can summarize texts and respond
to basic queries (e.g., “Does this paper relate to privacy?”), it can-
not replace human authors when performing judgment tasks. First
and foremost, ChatGPT, in its current implementation (GPT-4.0), is
non-deterministic and produces improper results for even simple
judgment tasks (e.g., “Does this work relate to privacy and sens-
ing?”); they can be incorrect (e.g., responds with “no” instead of the
correct response, “yes”), inconsistent (e.g., responds “no” for a given
work, but “yes” when asked a second time for the same or similar
work), or indeterminate (e.g., responds with an irrelevant response).
Furthermore, ChatGPT cannot provide consistent reasoning when
pressed to explain its decision when given a judgment task. Thus,
we reiterate that we did not use ChatGPT as part of our SoK and
recommend that future authors avoid using ChatGPT or generative
models in their current instantiation for judgment tasks.

Instead, we developed a tool based on the vector embedding rep-
resentation of papers to perform a well-defined set of tasks to assist
authors, described below in a further subsection, and specifically
designed it such that it cannot produce an output that could be used
to substitute human judgment. We use OpenAI’s Ada model not
ChatGPT or any generative language model. The main distinction
is that the Ada model is a deterministic model that represents each
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Figure 2: A flowchart highlighting the steps of our process to identify relevant works for our codebook. Steps that are performed
manually by the authors are denoted by rounded squares. Note that the system does not assist the review process beyond
sorting the list of works. The authors manually evaluate for inclusion/exclusion and code per the criteria described in Section 3.

work independently as a vector embedding, which we use to im-
prove and accelerate the sorting of papers for the human authors to
review, label, code, and analyze individually. In this regard, the Ada
model presents a more effective search engine, similar to other prior
SoK methodologies, but rather than optimizing results based on var-
ious aggregate relatedness metrics (e.g., keyword frequency, cited
by, citing), the results are interactively optimized to what we, as
authors, are seeking. Again, we reiterate that the embedding model
was only used to improve the sorting ability of candidate works,
but each work was individually evaluated by the authors. Further-
more, the authors could query candidate works manually for search
keywords and other traditional sensemaking approaches to identify
exemplar works. Thus, we are confident that our methodology is
equally thorough and aligned with existing SoK works.

3.3 Embedding-assisted Sorting of Works
3.3.1 Collecting Works from Relevant Venues. We began by
preprocessing our dataset, as depicted in the left panel of Figure 2.
The authors identified 12 venues spanning four distinct shareholder
communities: Human-Computer Interaction (CHI, IMWUT), Mobile
Systems (MobiSys, MobiCom, SenSys), Security & Privacy (USENIX
Security, IEEE S&P, CCS, NDSS), and Usability in Privacy (SOUPS,
PETS, FAccT). We group these venues into communities based on
factors such as their SIG relationships (e.g., SIGCHI, SIGMOBILE),
overlap in their Program Committee, and topics listed in their Calls
for Papers. These groupings were agreed upon by author consensus.
With the aid of the DBLP bibliography library, the title and abstracts
from works at these venues from 2018 to 2023 were compiled by a
combination of programmatic or manual collection (i.e., copy-paste
into a spreadsheet), resulting in 10,122 entries. Venues without their
2023 proceedings available prior to July 2023 were not included.

3.3.2 Representing Collected Works as Embedding Vectors.
An advanced vector embedding model, such as the OpenAI Ada 002
model [87], allows us to build a system to search and organize rele-
vant works that offer advantages over traditional keyword search.

The first advantage is that rather than identifying relevant works
based on whether the text contains individual search keywords
or synonyms of the search keywords, we can represent text as its
embedding vector and identify relevant works based on how similar
they are to the embedding vectors of previously identified relevant
works [88]. Functionally speaking, this means that rather than re-
lying on the authors’ ability to identify the correct set of keywords
(which has the limitations described above and may differ across
communities and involve community-specific jargon), the system
more directly relies on the authors’ ability to identify a set of rele-
vant works for which the system can find other relatedworks.While
other open-source embedding models can be used for this task, we
selected the Ada model as it was the highest-performing model
available at the time and did not require us to purchase dedicated
hardware or deploy costly large GPU cloud instances. For refer-
ence, while OpenAI charges $0.10 USD for 1M tokens [88], Amazon
EC2 charges $4.56/hr for the slowest instance [105] that can run
typical 7B embedding models (27 GB VRAM) and have comparable
performance to the Ada model (e.g., e5-mistral-7b-instruct) [43].

This Ada model was used for each work to generate vector
embedding for text containing only the work’s title and abstract.
This was done for two reasons, which were found through initial
small-scale experiments. First, we found that generating a vector
representation on text from additional portions of the work, such as
the introduction, did not significantly increase the cosine similarity,
and thus alignment, of the vectors of pairs of work known by the
authors to be related, compared to vectors based on just the title and
the abstract. However, the additional text processing comes with
an increase in computational cost. Second, other meta-data, such as
author or affiliation, influenced the embedding vectors, such that
works by the same author or affiliation had an increase in their
cosine similarity to each other compared to when the author or
affiliation information was omitted. Furthermore, when including
the author or affiliation, works often had higher cosine similarity
to works by the same author or affiliation versus to other works
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selected by authors that were known to be related and on similar
topics—we did not want the system to have its sorting behavior
influenced by such affiliations. Thus, we generated a 1536-long
embedding vector for each work based on its title and abstract.

3.3.3 Iterative Sorting and Labeling Based on Author Ex-
pertise. The second advantage is that rather than utilizing these
embeddings as part of a single-shot classifier to determine works
as either relevant or not relevant, we can utilize these embeddings
as part of an iterative regressor, which can determine the degree
of relevance [88], and thus, continually sort the list of works to be
reviewed, effectively creating a recommendation engine based on
how the authors categorized known relevant works. These embed-
ding vectors can encode the semantic distribution and clustering
of relevant works [88], offering a visual representation of relevant
works and providing the ability to explore the “neighborhood” of
related works, which allows us to understand the coverage of our
identified works relative to the broader academic landscape.

Leveraging these characteristics, we built a tool that utilizes a
Random Forest (RF) Regressor (SciKitLearn, default parameters)
model to interactively sort and assist in identifying relevant works
for inclusion in the codebook, as described by the middle panel of
Figure 2. To start, we defined the following criteria to label works
with a score from 1-5 as follows:
(1) Related to both privacy and sensing.
(2) Related to either privacy or sensing and a related field (e.g.,

sensing and encryption)
(3) Related to either privacy or sensing
(4) Related to only a related field (e.g., encryption)
(5) Completely unrelated

The collected works are randomly shuffled and compiled into a
“working list” (WL), and the work at the top of the list is presented
to the authors to label based on the criteria above. Once labeled,
the work is removed from the WL and placed in the “training list”
(TL). This process is repeated until at least five “1” works and five
“5” works are identified. The TL then trains the RF model to predict
the label of each work in the WL. The WL is then sorted based on
their label prediction in ascending order (i.e., works with predicted
labels closer to 1 appear first). Then, as the authors label works
recommended from the WL, the RF model is retrained with each
new label, regenerates predictions, and sorts the whole WL.

To avoid getting “stuck” in a “neighborhood” of related works, if
the cosine similarity of the next upcoming work is within a thresh-
old of the most recently labeled work, the system presents a work
randomly from the WL. This provided the added benefit that the
model periodically received negative training examples of com-
pletely unrelated works and random sampling to find undiscovered
areas of relevant works. That randomly selected work is similarly
labeled, moved from the WL to the TL, and the model is retrained,
generates new predictions, and sorts the WL.

This process was repeated until the works reached saturation,
where high-relevance works were no longer being identified. At
this point, the model’s label predictions were 3s or higher and were
always labeled by the authors as 3s or higher. In total, the authors
manually labeled 600 papers, of which 117 were labeled with a “1”
and, thus, highly likely candidates for inclusion in the codebook.

Work from all but one venue was represented in this list, as none
of the work from FAccT produced likely candidates for inclusion.

3.3.4 Model Performance and Validation. To validate our ap-
proach, we performed an evaluation to determine reproducibility,
model consistency, and how well the model performs at identifying
high-relevance works. In this evaluation, we used the list of 600
works with assigned values labeled by the authors and performed
a stratified 10-fold cross-validation, whereby the dataset is split
into 10 balanced train/test sets, and 10 independent models are
trained and evaluated: these 10 models would be trained on works
that have ground truth value assignments and tested on works that
also have ground truth value assignments. This process ensured
each subset was representative of the entire dataset. We utilized
the following metrics to encode how well the models work at their
assigned task—additionally, since it is a 10-fold cross-validation, we
can measure the consistency across the 10 models:
(1) Average Error: The average error in ground truth value versus

predicted value indicates the models’ accuracy.
(2) Standard Deviation of Errors: The standard deviation in er-

rors across the 10 folds signifies how consistently the models
perform regardless of their training and would show that the
models are reproducible despite being trained with different
training sets with different training orders.

(3) Percentage of Significant Errors: What percentage of works
have a predicted value with an error greater than 2, and, as a
corollary, how many papers that are high relevance value (i.e.,
1s) had a predicted value higher than 3, which signifies medium
to low relevance? This last metric is particularly important as
if a ground truth value 1 work has a predicted value of higher
than 3, it might not have been suggested by our tool. However,
if a ground true value 1 work has a predicted value of 3 or lower,
the authors would have still come across this work as works
were evaluated well into the 3s until saturation.
Through our 10-fold cross-validation, the average error for the

RF model was 0.600, which is less than the step size of 1 for the
label values. In practice, this indicates, on average, that the model
will predict the vast majority of papers correctly or have a score
that is off by one (e.g., predicted a 2 for a work that is a 1). We found
59.5% of works had their ground truth and predicted scores exactly
match, 81.5% of works had a difference in scores of 1 or less, and
99.0% predicted works had a difference of 2 or less, meaning that
regardless of how the models are trained, they still accurately can
predict the relevance of the paper and recommend it for author
review. The standard deviation of errors was 0.101, indicating that
the 10 models performed consistently; thus, if they were trained
with different training sets and different training orders—as was
performed in this evaluation—the results would be similar.

For significant errors, across all models, only 6 works were cate-
gorized with an error greater than 2, resulting in a 1% significant
error rate. All 6 of these works had a ground truth score of 4, which
was predicted as a score of 1. In practice, this error would not affect
the outcome of the codebook as authors would review the work
that was predicted as a 1, determine that it is not of relevance, and
not include it in the codebook. More importantly, of the works that
had a ground truth value of 1, none were predicted to have a value
greater than 3. This indicates that, regardless of how the models
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were trained, the model would still have recommended reviewing
all of the works that were included in the codebook (i.e., none of
the works in the codebook would have been missed).

We additionally re-ran this evaluation using Support Vector
Machines (SVM)—with both a linear kernel and an RBF kernel—and
found similar results for errors and standard deviations of errors—
0.595 (SD= 0.130) and 0.555 (SD= 0.124), respectively. Similarly,
there were no significant errors that would cause work to have
been missed with either SVM model. This further indicates that our
approach remains robust even when using different ML approaches.

3.4 Inclusion Criteria via Thematic Questions
To determine which works would be included in the codebook,
depicted in the right panel of Figure 2, we tailored a set of ques-
tions based on Langheinrich’s six principles of Privacy by Design
(PbD) [68] (denoted in bold):
(1) Notice: Does the work incorporate a way or recommendation

for person(s) to have noticed that a sensing device is collecting
information?

(2) Choice and Consent: Does the work incorporate a way or rec-
ommendation for person(s) to consent to control the data being
collected?

(3) Anonymity and Pseudonymity: Does the work incorporate a
way or recommendation for person(s) to have their information
not linked to their identity?

(4) Proximity and Locality: Does the work incorporate a way or
recommendation for person(s) to confine the sensing to a specific
location or proximity?

(5) Adequate Security: Does the work incorporate a way or rec-
ommendation for the system to secure sensitive information or
prevent it from getting leaked in some manner?

(6) Access and Resource: Does the work incorporate a way or
recommendation for person(s) to be able to audit the system and/or
does the system restrict data collection to only relevant data (and
not more)?

While there are various alternative privacy by design and taxon-
omy frameworks, such as ones by Cavoukian [22] and Solove [107],
we found Langheinrich’s principles, which are situated in the con-
text of ubiquitous computing and IoT devices, enabled us to create
this set of thematic questions that offered wide coverage relative to
the breadth of contributions while remaining focused in the area
we wish to explore, which is usable privacy-aware sensing.

A work’s contribution must have satisfied at least one of the
above questions for inclusion in the codebook in addition to being
a work that engaged both sensing and privacy. This was to exclude
works that were too generalized or theoretical, such as a novel
encryption method that is not sensor-specific or was not created
based on user-driven recommendations. Conversely, an interview
study about a sensor would be included if it included discussions
and recommendations incorporating a PbD principle. Based on
these inclusion criteria, of the 117 highly likely “1” candidates,
only three works were excluded as they did not contribute privacy
mitigation that engaged sensors and user privacy beyond simply
not incorporating any of the six PbD principles. These questions
are also used to identify core characteristics, where each question
represents a column in the codebook.

3.5 Additional Systematization Characteristics
In addition to the six characteristics derived from the PbD principles,
which were defined ahead of time, we constructed seven additional
characteristics that emerged through the analysis based on the
contribution’s privacy approaches and evaluation approaches to
code the works by, each forming a column in the codebook.

3.5.1 PrivacyApproaches. For privacy approaches, we constructed
three systematization characteristics, which capture the academic
space in which the authors present the work, their mitigation ap-
proach, and the author’s mindset surrounding how to address their
presented threat model.
Primary Identity: In which domain does the work identify as
its primary contribution, usable privacy or privacy-aware sensing,
even though the work can involve both? This was determined by
the work’s CCS Concept tags, author-defined keywords, or listed
contributions. In situations where there were elements of both UP
and PAS contributions (though infrequent), we used our collective
judgement to determine which was the predominant contribution
in the work. This characteristic was added to code what the authors
of the contribution consider their work to be contributing towards,
therefore categorizing their perspective rather than what we, as
authors of the SoK, believe the work contributes towards. We note
that this characteristic is used to group the works into UP and PAS
works for later sections and quantitative analysis.
Privacy Factor: What type of privacy mitigation is proposed in
the work? For this characteristic, we defined five categories:
(1) authentication, which utilizes user identity to define system

behavior;
(2) granularity, which reduces the resolution or range of the system

sensing or data collection;
(3) purpose, whereby the system uses purpose-built sensors to re-

strict its ability to collect certain types of privacy-invasive data;
(4) sanitization, whereby the system actively removes or prevents

the collection of privacy-invasive data;
(5) control, whereby the system presents user-accessible actions to

determine sensor behavior.
This characteristic was added to code the general approach the
suggested privacy mitigation takes and to what effect the mitigation
has on system behavior and data collection.
Privacy Mindset: How does the work contextualize its proposed
privacy mitigation? For this characteristic, we defined four cate-
gories:
(1) all or nothing, which presents a binary perspective on privacy

and proposes an absolute privacy mitigation;
(2) better than nothing, which presents a gradient perspective on

privacy and proposes a privacy mitigation with known and
well-scoped limitations;

(3) security is privacy (defensive), which presents defensive secu-
rity measures (e.g., system hardening, encryption) as proposed
privacy mitigations;

(4) security is privacy (offensive), which presents offensive security
measures (e.g., jamming/attacking privacy invasive systems) as
proposed privacy mitigations.
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This characteristic was added to code how the work contextualizes
its contribution and approaches mitigating a presented privacy
threat model.

3.5.2 Evaluation Approaches. For evaluation approaches, we
constructed four systematization characteristics, which capture
how the proposed privacy mitigation is evaluated for a given mea-
sure of success.
Technical Evaluation: Did the work perform a technical evalua-
tion of the proposed privacy mitigation demonstrating increased
privacy (e.g., the proposed method effectively sanitizes the data)?
User Evaluation: Did the work evaluate the proposed privacy
mitigation with users for factors such as acceptance, usability, or
comfort?
Feasibility Evaluation:Did the work evaluate the feasibility of the
proposed privacy mitigation, such as through a prototype, research
artifact, or operational system?
System Evaluation: Did the work evaluate a system incorporat-
ing the proposed privacy mitigation for performance and privacy-
preserving ability?
The first two, technical and user, are very common in PAS and
UP works, respectively, but we wanted to code whether PAS and
UP works additionally evaluated technically or against users. A
feasibility evaluation characteristic was added to the codebook to
determine whether the authors of the work considered how the
proposed privacy mitigation would manifest in real-world systems
or whether privacy mitigation is more theoretical in nature. Finally,
a system evaluation characteristic was added to code whether a
real artifact was evaluated and whether it was effective in a real
and physical experimental situation rather than, for example, solely
in a technical simulation or Wizard-of-Oz’ed for users.

We compiled a spreadsheet where each row represents a work,
and each column represents the abovementioned characteristics,
similar to what is performed in prior SoKs. For coding, we followed
a consensus coding process similar to that described by Richards
et al. [99]. Initially, one author performed the coding, and two
other authors joined to discuss and refine the codes to agreement.
During these discussions, we applied a similar analysis approach
to a prior SoK [126], applying a reflexive thematic analysis ap-
proach [21] where new themes emerged (beyond the initial 6 PbD-
based columns), leading to updates in the codebook and recoding
of the works. These new themes formed seven characteristics de-
fined by their Privacy Approaches and Evaluation Approaches. The
authors discussed and reached a consensus on each work, ensuring
full agreement on the codes and themes presented. Regarding the
experience of the coders, one is a Ph.D. Candidate with 10 years
of sensing research experience in HCI and Mobile Systems, one
is an Assistant Professor with research and Papers Committee ex-
perience in HCI, UiP, and S&P, and one is an Associate Professor
with research and Papers Committee experience in HCI and Mobile
Systems and serves as an Editor of an HCI journal.

4 Systematization
Through analysis of our codebook, four distinct themes emerged
that highlight how the broader community has explored research
questions surrounding usable privacy-aware sensing:

(1) Control and awareness form the cornerstone of usable privacy
(2) “All or Nothing” vs. “Better than Nothing”: balancing system func-

tionality, user acceptance, and privacy
(3) Unvalidated assumptions of user needs in privacy-aware sensing

contributions
(4) User-driven privacy mitigations often lack feasibility or system

evaluations

The following subsections will analyze each individual theme, how
it relates to the broader body of usable privacy-aware sensing work,
and key takeaways. Based on these themes, we discuss community
recommendations in a later section (Section 6.1).

4.1 Control and Awareness Form the
Cornerstone of Usable Privacy

We observed that works contributing to UP strongly emphasized
user control and awareness as their Privacy Factor and Privacy
Mindset in developing privacy mitigation mechanisms for sensing
devices.Within this broader theme, we observed two subthemes: UP
contributions very infrequently employ alternative Privacy Factors
and Privacy Mindsets, and, when PAS contributions do employ
control as a Privacy Factor, albeit rarely, they are paired with a
different Privacy Mindset than awareness.

UP contributions very infrequently (only 13 [2, 19, 37, 52, 54, 66,
69, 78, 81–83, 119, 125] of 70) came from a different Privacy Fac-
tor and Privacy Mindset other than control and awareness, which
represented the remaining 57 out of 70 UP works. However, these
works still often recommended the design principles of Notice and
Choice & Consent as part of their privacy mitigation mechanisms.
This suggests that even if a UP contribution emphasizes a differing
Privacy Factor or Privacy Mindset than control and awareness, they
still play a significant role in that work; for UP contributions, re-
gardless of Privacy Factor or Mindset, 78.5% incorporated Notice
and 88.5% incorporatedChoice & Consent.

PAS contributions, conversely, only infrequently (4 [33, 34, 84,
117] of 44) had the control privacy factor, with only one pairing it
with awareness [84]. In works that employed an offensive mindset,
control meant granting a user the ability to enable/disable a system
or enable/disable an active defense (e.g., controlling microphone
behavior [28, 47, 57, 67, 71, 110]), and awareness is implied but not
a goal (i.e., the system doesn’t seek to notify or remind the user
of its state). Additionally, very few works incorporated the design
principles of Notice (5 [26, 33, 34, 60, 84] of 44) and Choice & Consent
(14 [23, 26, 33, 34, 47, 55, 57, 60, 71, 74, 84, 114, 128, 131] of 44).

From this theme, we identified a tension between user autonomy
and user burden. Works categorized with control and awareness,
(most often UP works) argue that the more the user can control
elements of sensing devices that relate to privacy, the more they
can ensure their own privacy. However, PAS works often prescribe
privacy mitigations that do not engage the user and operate in
the background, emphasizing automating privacy protections and
reducing user burden. This gap presents an exciting avenue for
each community to explore further. UP works could explore less
user-dependent methods to improve privacy and, within that space,
evaluate what behind-the-scene sensor privacy mitigations would
be acceptable to users. PAS works could explore how the design
principles of Notice and Choice & Consent could enhance existing
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privacy mitigations by leveraging the user’s ability to identify pri-
vacy concerns, work with the user to mitigate them, and improve
user trust through active participation.

4.2 Balancing System Functionality, User
Acceptance, and Privacy

Within this theme, we observed a divide in the approaches between
two Privacy Mindsets, “All or Nothing” and “Better than Nothing.”
In the “All or Nothing” approach, contributions prescribed defini-
tive, explicit safeguards for user privacy that involve completely
disabling a sensing device (or its sensing capability) or leaving it to
operate without modification [26, 33, 34, 72, 101, 103, 125, 131]. This
ensures comprehensive privacy mitigation that can easily match a
user’s mental model, as the actual operation behaviors of a com-
pletely disabled device (i.e., no data collection) are well defined and
should match the user’s expectation (i.e., no data collection). Ex-
amples include UP contributions that tangible privacy-preserving
methods for smart homes [125] and PAS contributions that fully
disable sensors from collecting data by cutting off power [26].

In “Better than Nothing” approaches [4, 8, 9, 32, 37, 52, 60, 61,
69, 83, 98, 100, 119, 121, 132, 137], contributions identified that “All
or Nothing” approaches come at the cost of long-term and continu-
ous system performance (i.e., how effective can the system be in
performing its duties if it is frequently disabled and re-enabled) in
order to provide explicit guarantees of user comfort and privacy.
Conversely, these works propose methods that balance these fac-
tors by utilizing sanitization (e.g., removing speech from acoustic
information [60, 132]) or granularity (e.g., reducing the resolution
of images to reduce sensitive content [100, 121]).

With respect to how these approaches relate to the broader body
of work, we observe a difference in how these works present and
evaluate their contribution. Since the “Better than Nothing” ap-
proaches aim to find a solution that balances system functionality
with user acceptance and privacy, the contributions of the work
often engage in the discussion and evaluation of how the contri-
bution considers its tradeoffs, limitations, and how users perceive
the system. “All or Nothing” approaches often placed a technical
measure of privacy above all. While many works evaluated their
contributions with users to determine their acceptance, they are
more often evaluated for whether the user accepts the mitigation as
a solution to the threat model they present rather than whether the
user accepts the mitigation as usable [34, 125]. Furthermore, since
the system’s needs are secondary to the privacy need, whether the
system remains usable or functional (or other downstream effects
of the mitigation) is often not evaluated or discussed. For example,
while offensive ultrasonic jamming [28, 57, 110] can manifest addi-
tionally as an “All or Nothing” protection against microphones for
the wearer, these systems indiscriminately jam all microphones in
the environment within a certain radius. A more benign side-effect
is that a wearer of such a device effectively robs those in proximity
of the convenience of using voice commands with virtual assistants.
Worse, however, is that the wearer could unintentionally and sig-
nificantly impede a nearby person’s access to urgent necessities,
such as a phone call to emergency services.

From this theme, there are competing factors of system func-
tionality, user acceptance, and privacy. However, for usable privacy-
aware sensing, all three factors are of immense importance. While
“All or nothing” approaches can make strong privacy guarantees,
those guarantees often come at the cost of usability or system func-
tionality. Notable exceptions, however, are approaches that pair the
“Purpose” Privacy Factor with the “All or Nothing” Privacy Mindset,
where the system is designed for a specific purpose and has sensors
only capable of collecting specific information (e.g., air quality) and
is explicitly prevented from performing any other tasks or collect-
ing other kinds of information. In this case, the privacy mitigation
does not affect the usability or functionality of the device. Overall,
while both approaches can improve sensor privacy, we recommend
that all approaches consider their proposed privacy mitigations’
downstream effects on usability and system functionality.

4.3 Unvalidated Assumptions of User Needs in
Privacy-Aware Sensing Contributions

For PAS contributions, a significant number of identified works (35
of 44) did not validate their privacy mitigation against user needs
and comfort but rather based their approach on assumptions or
an interpretation of prior work. For example, many works often
perform a technical analysis of their privacy mitigation and rep-
resent its effectiveness using some metric that maps to increased
privacy (e.g., how effective speech was anonymized [9, 131, 132],
was sensitive content removed from an image [100, 137]) but do not
evaluate it with users or as part of a system to determine whether
this mitigation is useful. The privacy mitigation may not meet user
comfort needs, might be difficult to control/use, or may not be
perceived as valuable, potentially reducing its acceptance by users.
The privacy mitigation may also have unforeseen impacts when
included as part of a system as a whole. For example, it may re-
duce the performance of the system (e.g., accuracy, responsiveness,
battery life), which may also be an unacceptable tradeoff for users.

The main takeaway from this theme is that the consideration
should not always be whether the privacy mitigation is performant
or “correct,” but rather if the mitigation is usable and would be
accepted and, therefore, adopted, which were evaluated by only 9
PAS works [8, 23, 26, 28, 33, 34, 60, 74, 114]. Since evaluations with
users are less prevalent within the PAS works, the onus falls on
a subsequent researcher or developer to determine whether that
approach is accepted by users within a given context. This barrier
may reduce the willingness of others to utilize this research as part
of a larger system, reducing its potential for impact. Given these
factors, there is an immense opportunity for PAS contributions to
close the loop and evaluate the privacy mitigation with users. This
can help refine the contribution and offer an additional metric to
highlight its significance, leading to greater impact.

4.4 User-driven Privacy Mitigations Often Lack
Feasibility or System Evaluations

Related to the theme above, UP contributions often (which we
quantify in the following section) do not perform a technical, fea-
sibility, or system evaluation to determine whether the proposed
privacy mitigation can be implemented as part of a system and,
if so, what its quantified effects on user privacy are. For example,
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while many useable privacy contributions identify valuable user
privacy needs and use qualitative methods to develop foundational
privacy theory and design recommendations, the works often do
not provide concrete examples of how these mitigations would
be implemented or a discussion of how existing systems could be
adapted to support user needs. This makes it difficult for designers
and future researchers to develop systems that build upon these
works’ findings. Many works that present concrete design recom-
mendations but do not perform a feasibility evaluation present
solutions that may not be feasible given current computing or hard-
ware resource constraints (e.g., replacing all persons in images with
a high-definition cartoon representation using only on-device hard-
ware). In our coding of the feasibility characteristic, we took a very
generous approach to what satisfied a feasibility evaluation: a dis-
cussion on how the usable privacy mitigation could be integrated
into real-world situations would satisfy this characteristic. This had
an effect of generally increasing the number of works that satisfied
the feasibility characteristic (37 of 70), but of those works, 23 [2, 10–
12, 20, 24, 39–41, 51, 64, 69, 75, 76, 78, 89, 102, 111, 122, 129, 133–135]
included a discussion, 9 [38, 42, 54, 83, 94, 108, 115, 125, 130] pre-
sented an artifact (such as a paper prototype or visual example), and
5 [14, 19, 70, 73, 82] built a prototype (of which only 3 [19, 70, 82]
included a system evaluation). If we consider feasibility in the nar-
rowest sense (i.e., demonstration through prototype), only 7.1% of
UP works satisfy this characteristic.

The key takeaway from this theme is that for UP contributions,
feasibility evaluations, and discussions are critical to making their
findings accessible and actionable for adoption by future system
researchers and industry partners. The previous theme highlights
that without user validation, the systemmay effectively protect user
privacy, but users may not be comfortable with or willing to adopt
the approach. This theme presents the inverse, where, without a
feasibility evaluation, the proposed mitigation may be effective in
improving user comfort and adoption, but system designers may
not understand how to incorporate the design recommendations
or implement them with the technology available.

5 Quantitative Findings
We also used quantitative approaches to investigate our qualitative
findings and provide additional context to the methods employed
by various stakeholder communities.

5.1 UP Validate through Users; PAS Validate
through Technical Metrics

We utilized the codebook to also quantify how the two types of
works evaluated their contributions as defined in Section 3. For
reference, a technical evaluation involves evaluating the proposed
method using an objective measure of increased privacy (e.g., 100%
of speech content was removed from acoustic data collection); a
user evaluation involves evaluating the proposedmethodwith users
for factors such as acceptance, comfort, or usability; a feasibility
evaluation involves an evaluation of whether the proposed method
can be integrated into a target situation/system (e.g., with an artifact,
a prototype, a discussion of existing products or approaches); and
a system evaluation involves evaluating the proposed method as
part of a system and determining its effect on privacy preservation

Contribution Technical User Feasibility System
Usable Privacy 4.3% 92.9% 52.9% 4.3%
Privacy-Aware Sensing 93.2% 20.5% 90.9% 63.6%

Table 1: How UP and PAS works evaluate their contributions,
broken down by percentage of works that performed techni-
cal, user, feasibility, and system evaluations.
Usable Privacy (70) Notice Choice &

Consent
Anonymity &
Pseudonymity

Proximity &
Locality

Adequate
Security

Access &
Resource

Notice (55) 1 0.909 0.218 0.236 0.291 0.345
Choice & Consent (62) 0.806 1 0.210 0.242 0.403 0.419
Anonymity & Pseudonymity (17) 0.706 0.765 1 0.235 0.471 0.412
Proximity & Locality (15) 0.867 1 0.267 1 0.333 0.333
Adequate Security (27) 0.593 0.926 0.296 0.185 1 0.444
Access & Resource (28) 0.679 0.929 0.250 0.179 0.429 1

Table 2: The probability of any of the principles to be paired
with another principle. The number of works that utilize that
principle is denoted with parentheses. For Usable Privacy,
Choice & Consent pairs strongly with all other approaches.
Privacy-Aware Sensing (44) Notice Choice &

Consent
Anonymity &
Pseudonymity

Proximity &
Locality

Adequate
Security

Access &
Resource

Notice (5) 1 1 0.200 0 0.600 0.400
Choice & Consent (14) 0.357 1 0.357 0.357 0.714 0.357
Anonymity & Pseudonymity (27) 0.037 0.185 1 0.592 0.481 0.333
Proximity & Locality (19) 0 0.263 0.842 1 0.368 0.474
Adequate Security (26) 0.115 0.385 0.500 0.269 1 0.308
Access & Resource (15) 0.133 0.333 0.600 0.600 0.533 1

Table 3: The probability of any of the principles to be paired
with another principle. The number of works that utilize that
principle is denoted with parentheses. For PAS, approaches
often included a pairing with Anonymity and/or Security.
However, very few works included Notice and was an un-
likely pairing with the other methods.

and/or system performance. The summary statistics for each type
of work can be seen in Table 1.

Overall, the quantitative results match the themes presented in
the previous section. Usable Privacy (UP) contributions robustly
evaluate their contributions with users. However, only a little
over half of the contributions performed a feasibility evaluation of
whether the proposed privacy mitigation can be incorporated or
developed as part of existing systems or envisioned situations—or
only 7.1% under a narrower definition of feasibility as described in
the previous section. Furthermore, very few of these contributions
perform technical or systems evaluations that provide a quantitative
measure of how their privacy mitigation improves user privacy.

For Privacy-Aware Sensing (PAS) contributions, they conversely
robustly evaluate the technical aspects of their contributions, but
less than a quarter evaluate the contribution with users for usability
or acceptance. While feasibility is often demonstrated through
a prototype as part of the technical evaluation, a percentage of
contributions did not evaluate the proposed mitigation as part of a
system, denoting the lower System evaluation percentage.

5.2 UP and PAS Contributions Do Not Have
Overlapping Privacy Priorities

We also analyzed our codebook to see if there are differences in how
the different communities utilize privacy by design principles in
their contributions. For each community, UP and PAS, we computed
a pairing coefficient between each of the six privacy principles with
another principle as a percentage of works that include that pairing.
For example, for UP, of the 55 works that incorporate Notice, 90.9%
of them also incorporated Choice & Consent. The results of these
pairing coefficients can be seen in Tables 2 and 3.
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For contributions in the UP domain, the majority of works em-
ployed Notice (55) and Choice & Consent (62). These principles also
paired strongly with each other, where more than 80% of works that
employed one employed the other. Choice & Consent also strongly
paired with all other principles, being the top pairing for each. How-
ever, the remaining four principles had relatively weak pairings
with each other and were infrequently utilized; for example, Prox-
imity & Locality was used in less than a quarter of UP contributions.

Within the PAS contributions, Anonymity & Pseudonymity and
Adequate Security were the most frequently used principles and
had strong pairings with all other principles except for Notice and
Choice & Consent, the two preferred principles for UP contributions.
These two principles were the most infrequently used for PAS con-
tributions, with only 5 works employing Notice. For the works that
employed Choice & Consent, the more likely pairing was Adequate
Security, rather than Notice as is the case for UP contributions.

Overall, we observe a distinct divide in the manner in which the
two communities not only utilize privacy principles, but also how
they pair and combine contributions. Table 4 presents a condensed
version of our codebook with 37 unique combinations of privacy
principles. While certain combinations are presented by both com-
munities (e.g., Row 17 is represented in both communities), there
remains a skew in the combinations. Of the 13 works represented
by Row 13, 12 are UP contributions. Conversely, of the 7 presented
in Row 22, 6 are PAS contributions. Overall, from the rest of the
table, we can see that while there is a diverse distribution of combi-
nations across the literature, each community is distinctly focused
on a small subset of those combinations.

5.3 Direct Embeddings Analysis Shows Distinct
Divide in How Contributions Talk About
Usable Privacy-Aware Sensing

Beyond the works included in our codebook, we revisited the gen-
erated embeddings for all 10,122 works collected across the 12
venues spanning four distinct shareholder communities: Human-
Computer Interaction (CHI, IMWUT), Mobile Systems (MobiSys,
MobiCom, SenSys), Security & Privacy (USENIX Security, IEEE S&P,
CCS, NDSS), and Usability in Privacy (SOUPS, PETS, FAccT). We
generated a t-SNE projection to reduce the dimensionality of the
embedding and assist in visualization (see Figure 1). Then, using the
reduced dataset, we fit a 2-D Gaussian ellipse to each community for
visualization purposes and compute the Bhattacharyya coefficient
(BC), which represents the similarity between two distributions for
each pairwise combination, as seen in Table 5. In this case, the BC
distance provides an effective general-purpose metric for overlap
in two normally distributed distributions and provides an intuitive
measure of overlap. A BC of 1 indicates identical distributions,
while a BC of 0 indicates completely non-overlapping distributions.
For a point of comparison, Cohen’s d, a commonly used metric for
comparing distributions, does not take into account the variance
and shapes of the distribution but rather the magnitude of mean
differences [90]. Given that the shapes of the distributions are also
of interest, we chose the BC distance metric.

While these results are based on our entire embeddings dataset,
not just the works selected for the codebook, they reveal charac-
teristics that reflect themes identified from the qualitative analysis

Notice Choice &
Consent

Anonymity &
Pseudonymity

Proximity &
Locality

Adequate
Security

Access &
Resource

# Usable
Privacy

# Privacy-Aware
Sensing

# Total

1 0 1 1
2 0 5* 5
3 1 0 1
4 0 3* 3
5 1 1 2
6 0 4* 4
7 1 3* 4
8 4* 2 6
9 4* 0 4
10 0 1 1
11 0 1 1
12 1 0 1
13 12* 1 13
14 0 5* 5
15 0 2* 2
16 4* 0 4
17 3 2 5
18 1 0 1
19 7* 0 7
20 1 0 1
21 1 0 1
22 1 6* 7
23 2* 0 2
24 0 1 1
25 2* 0 2
26 9 1 10
27 0 1 1
28 4* 0 4
29 4* 1 5
30 2* 0 2
31 0 1 1
32 2* 0 2
33 1 0 1
34 1 0 1
35 0 1 1
36 0 1 1
37 1 0 1

Table 4: The 37 unique combinations found in our codebook.
A star denotes a combination of more than two works in
which a lopsided composition exists across communities.

Human-Computer
Interaction

Mobile
Systems

Security &
Privacy

Usability in
Privacy

Human-Computer Interaction 1 0.516 0.299 0.565
Mobile Systems 0.516 1 0.480 0.256
Security & Privacy 0.299 0.480 1 0.673
Usability in Privacy 0.565 0.256 0.673 1

Table 5: The BC values for each community pairing. A value
of 1 indicates identical distributions; 0 indicates no overlap.
The pairing with the least overlap is in bold.

of our codebook. The BC values for Usability in Privacy venues
suggest a significant overlap with Security (0.673) and HCI (.565)
venues. Similarly, the BC values for Mobile Systems venues suggest
a significant overlap with Security (.480) and HCI (.516). This is
unsurprising given the historical relationship and development of
these communities and how they situate themselves (e.g., usabil-
ity in privacy engages both HCI and security topics, and mobile
systems engages both HCI and security topics).

However, the BC values also suggest minimal overlap between
Mobile Systems and Usability in Privacy (0.256) as well as minimal
overlap between HCI and Security (0.299). As seen in Figure 1, these
are also the two combinations where their fitted ellipses do not
have any overlap. This indicates that few works engage these two
combinations of communities, despite these communities having
significant overlap with a shared community: Mobile Systems and
Usability in Privacy both have significant overlap with HCI and Se-
curity individually, but not with each other, while HCI and Security
both have significant overlap with Mobile Systems and Usability in
Privacy, but not with each other.

Given the strong preference in the manner that UP and PAS
works evaluate their contributions and opt for different privacy
design principles, shown in the previous subsections, these pat-
terns of significant or minimized overlap across communities offer
additional evidence that the communities have distinct “cultures”
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that influence how privacy mitigations for sensors are ideated, de-
signed, and evaluated. Furthermore, the minimal overlap between
certain combinations of communities further suggests a lack of
cross-pollination, highlighted by the low density of works at the
center of the t-SNE visualization, which may partially influence the
minimal overlap in the methodologies described above. We see this
as a significant growth opportunity for cross-disciplinary Usable
Privacy-Aware Sensing research.

6 Discussion
In this section, we discuss a series of recommendations based on
our findings that can help address the gap between Usable Privacy
(UP) and Privacy-Aware Sensing (PAS) research approaches and
foster greater collaboration. We then reflect on our SoK approach,
its limitations, and future work. Finally, we philosophize on oppor-
tunities for cross-disciplinary academics to influence IoT design
and policy through usable privacy-aware sensing (UPAS) research.

6.1 Reflections and Recommendations for the
Research Community

We propose two recommendations based on our findings in this
work. The first recommends increasing the diversity and breadth
of privacy principles (i.e., using some of the other less common Pri-
vacy by Design principles) within both UP and PAS contributions
through increased engagement across disciplines. The second rec-
ommends both contribution types evaluate their work end-to-end,
such as by. For including both a user component and a feasibility
evaluation to allow researchers from any community to find value
in the contribution that overlaps with their priorities.

6.1.1 Increasing the Diversity of Privacy Principles in both Usable
Privacy and Privacy-Aware Sensing. Given the strong affinity of
UP and PAS contributions towards specific privacy principles, we
recommend that UP and PAS researchers increase the variety of ap-
proaches and explore each others’ preferred approaches. While
there are many opportunities to increase the overlap between
the two contribution types, we will primarily provide examples
based on the lesser utilized approaches in each community: Notice
for PAS contributions and Proximity & Locality and Anonymity &
Pseudonymity for UP contributions.

PAS contributions could incorporate the Notice principle more
frequently and find novel ways sensor hardware can support this
opportunity. This could be as simple as adding an LED that lights
up whenever the device collects sensor information. This relatively
simple and easy addition could be incorporated in many situations.
However, as a caveat, PAS designers must also consider whether
that notice is adequate given diverse communities or accessibility
needs (e.g., non-visual cues for blind and low-vision users).

Conversely, UP contributions can explore ways to make some
of the lesser-used principles have greater usability or engage the
user in a manner that does not increase their burden. Proximity
& Locality and Anonymity & Pseudonymity were relatively under-
utilized privacy principles in UP works, which can enormously
benefit from a greater diversity of usable interventions. For exam-
ple, Usable Privacy contributions can explore how to inform users
that the sensing radius of a device can be defined and, with that
information, better understand the tradeoffs when utilizing such an

intervention. Overall, we envision a boon of research contributions
as UP and PAS overlap more significantly and contribute towards
cross-disciplinary UPAS research. Ultimately, we believe a greater
overlap in the approaches of both groups would proactively guard
against academic siloing.

6.1.2 End-to-End Evaluations for Both Communities. We also rec-
ommend that both contribution types strive to evaluate their ap-
proaches from end-to-end when applicable, meaning that PAS con-
tributions could be evaluated with users (or provide evidence of
user acceptance based on the literature) and UP contributions could
manifest their recommendations through prototypes (e.g., paper
prototypes, Wizard of Oz prototypes) or, at the very least, provide
discussions of the feasibility of their recommendations and how
they can be incorporated into existing sensing systems.

For PAS contributions, user evaluations present an honest sig-
nal of whether or not users are comfortable with a given privacy
mitigation and, therefore, improve the acceptance of the sensing
system. For designers, when deciding between varying approaches,
including a user evaluation is an important additional factor that
helps contextualize where and when the mitigation is appropri-
ate, as there is no one solution for all problems. Furthermore, to
determine how inclusive a privacy solution is (i.e., across various
demographics, different accessibility needs, and expectations of dif-
fering communities), user research must be included in all stages of
the design process. Thus, we strongly recommend these evaluations
to increase the ultimate impact of PAS contributions.

For UP contributions, evaluating their feasibility helps designers
and PAS researchers gauge how well the recommendations could
be incorporated into systems. Furthermore, these feasibility eval-
uations, such as through a paper prototype, help present how the
authors see these recommendations in practice, as many theoretical
recommendations can have various interpretations, as seen in many
diverse works we identified that engage the same privacy principle.

We caveat the recommendations above with the understanding
that different communities have varying methodologies for present-
ing and evaluating privacy mitigations; there will be contributions
where it does not necessarily make sense to do technical, user, feasi-
bility, or systems evaluations. However, to support emerging UPAS
research, the following recommendations will make it easier for
PAS and UP researchers individually to understand and appreciate
each others’ contributions.

6.2 Limitations
Within this work, we detail two sources of limitations of our SoK:
the limitations of our embedding-based sorting tool and the limita-
tions inherent to the qualitative methods used in SoKs.

6.2.1 Limitations of Our Embedding-based Sorting. Our embedding-
based sorting approach has limitations, the first being that it par-
tially inherits the limitations of other SoK works that narrow the
focus of the search space by selecting a set of venues. While we
utilized our author expertise to select 12 relevant venues, we do
not expect it to be an exhaustive list of where relevant works could
be found. Like other SoKs, the cost of collecting, organizing, and
formatting works presents a similar human-labor bottleneck to
collect works that can be sorted by our tool. While collecting titles
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and abstracts and properly formatting them, sometimes manually,
requires the most time and effort, generating and processing their
embeddings also takes time and computational resources.

The second limitation is specific to the embedding model used to
sort the works. As mentioned in an earlier section, the Ada model
is not an open-source model and inherits all of the limitations
that come from a closed-source model. In particular, OpenAI may
replace the Ada model with a different offering or quietly fine-
tune the model, making newly generated embeddings potentially
incompatible with previously generated ones. Alternatively, robust
open-source models would not face these issues, as the model can
be checkpointed, shared, and reused indefinitely. However, the large
computational requirements may make this approach inaccessible
to many researchers. Based on the effectiveness of the sorting that
allowed us to find a diverse set of works, we believe this embedding-
based approach was well worth the effort, especially for SoK works
that look at cross-disciplinary research. Future work will explore
preparing our tool to be open-source, evaluate smaller open-source
embedding models, and improve its usability to make it easy for
researchers to help find connections across communities.

6.2.2 Limitations of Author Expertise-based SoKWork. Weacknowl-
edge that, irrespective of how effective our sorting tool is, our find-
ings are still limited by author expertise. The tool can only help sort
relevant works; it cannot aid in deciding whether a work should be
included in a codebook or how to code a work. We still relied on our
expertise to determine whether we reached qualitative exhaustion,
as the tool could not make that determination and was explicitly
designed not to do so. Thus, while the tool was incredibly effec-
tive in its narrow scope, it cannot replace human-effort SoK work.
We also acknowledge that how we group communities (e.g., HCI,
S&P, MS, UiP) is based on author expertise. However, regardless
of how a work is grouped, its embeddings are not influenced by
the grouping—the group label, nor the venue the work is from, is
not included as part of the embedding. Thus, regardless of how
we grouped the works, we required our qualitative expertise to
contextualize the quantitative results that present a research gap
represented within the embeddings.

Our work diverged from more common SoK approaches by shift-
ing where, in the process, author expertise is applied. In more
common SoK approaches, author expertise is applied at the key-
word crafting stage, whereby authors precisely and iteratively craft
search terms to find the right set of papers [104, 109, 126]. To bolster
these results, authors rely on their expertise and prior knowledge
of relevant papers to compile a well-rounded and representative
codebook [104, 116]. However, relying on expert keywords also
imposes an unrealistic expectation in cross-disciplinary exploration,
where the authors must have expertise in various disciplines and
their respective jargon and community-specific phrases.

To avoid this challenge, rather than knowing the proper jargon
to use as search terms for those communities, our sorting tool
allowed us to focus our author expertise on identifying UP and PAS
contributions and whether they merited inclusion in our codebook.
While our embeddings tool allowed us to find a diverse set of UP
and PAS works dispersed across a wide range of venues—works
that may have been buried under thousands of results if more
generic terms such as “privacy” and “sensing” were used—we retain

the same limitation as other SoKs where author expertise is still
required to determine whether a work is deemed for inclusion or
exclusion and, subsequently, how to code the work.

6.3 An Emerging Opportunity for Academia to
Influence IoT Design and Policy

This work details, qualitatively and quantitatively, a research gap
between UP and PAS contributions. This research gap causes con-
tributions from either side to lack context and information that is
valuable for affecting real-world IoT design and device privacy poli-
cies. As mentioned above, PAS contributions may not be adopted
because it is unclear how usable their privacy mitigation is or
whether or not they would be adopted by users. UP contributions
may never see mainstream adoption by PAS researchers or design-
ers because the recommendations may be too theoretical to put
into practice and may have recommendations that cannot be im-
plemented with today’s technologies. Essentially, for an IoT device
or policy to widely adopt a user privacy safeguard, it needs to be
usable and real-world functional. Thus, this research gap hinders
the emergence of more mainstream UPAS systems today.

Whether academia can influence IoT design and policy to im-
prove user privacy requires us to consider whether the established
stakeholder communities (e.g., S&P, HCI, MS, UiP) can, on their
own, house and foster cross-disciplinary research that incorporates
the best elements of each community. Based on our findings in this
work, it does not appear that any single community can, on its own,
support this type of work. Neither would any two combinations of
communities; for example, HCI+MS contribute a significant number
of PAS works, but very few UP works. However, despite the divide
between UP and PAS contributions and the lack of overlap between
certain community pairs, we see evidence of works at the center
of all four stakeholder communities, albeit at a significantly lower
density and occurrence. We see this emerging community as a way
for academia to improve IoT user privacy.

7 Conclusion
To conclude, this work presented a Systematization of Knowl-
edge (SoK) whereby 114 selected works were analyzed and qualita-
tively categorized into four distinct themes. Through these themes,
we found strong community preferences that influence how re-
searchers approach the challenges of designing Usable Privacy-
Aware Sensing systems, revealing a research gap. We used these
themes to highlight significant opportunities for cross-community
collaboration to close this research gap. Various quantitative analy-
ses provided additional evidence of this gap, and a significant divide
between UP and PAS-style contributions is quantified. These re-
sults also showed a quantifiable lack of overlap in the venues where
emerging UPAS research appears, and greater cross-pollination
could increase support for this type of research. We concluded
with recommendations, including how a greater diversity of design
principles could be incorporated within UP and PAS works and
formal recommendations for how stakeholder communities can
incentivize new research in the cross-disciplinary UPAS domain.
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Table 6: The codebook we generated to perform our qualitative and quantitative analysis.
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